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Abstract Following recent work of Chernov, Markarian, and Zhang, it is known that the
billiard map for dispersing billiards with zero angle cusps has slow decay of correlations
with rate 1/n. Since the collisions inside a cusp occur in quick succession, it is reasonable
to expect a much faster decay rate in continuous time. In this paper we prove that the flow is
rapid mixing: correlations decay faster than any polynomial rate. A consequence is that the
flow admits strong statistical properties such as the almost sure invariance principle, even
though the billiard map does not.

The techniques in this paper yield new results for other standard examples in planar
billiards, including Bunimovich flowers and stadia.

Keywords Suspension flows - Dispersing billiards with cusps - Rapid mixing - Polynomial
mixing - Almost sure invariance principle

1 Introduction

Lorentz gas models (and the associated discrete time billiard maps) are an important class of
examples in mathematical physics. Their systematic study from the viewpoint of smooth er-
godic theory was begun by Sinai [31] in the 1970’s. Sinai focused on planar periodic Lorentz
gases with convex obstacles (dispersing billiards) proving properties such as uniform hyper-
bolicity and ergodicity. The situation is analogous to the much-studied case of Anosov and
Axiom A systems for which advanced statistical properties such as decay of correlations and
central limit theorems are by now classical [2, 29, 32]. In particular, if A C M is a mixing
hyperbolic basic set with Gibbs measure p for an Axiom A diffeomorphism f : M — M,
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then for all Holder observables v, w : A — R the correlation function

p(n):/vwof"d,u—/vdu/wdu,
A A A

decays exponentially: p(n) = O (") for some 7 € (0, 1). The corresponding results for bil-
liards are complicated by the presence of singularities and unbounded derivatives, but these
difficulties were eventually overcome by Young [34] and Chernov [6] who proved exponen-
tial decay of correlations for planar periodic dispersing billiards by constructing a certain
type of infinite Markov extension called a Young tower [34, 35].

The situation for flows is considerably more subtle. Whereas mixing Axiom A diffeo-
morphisms always have exponential decay of correlations for Holder observables, there
exist Axiom A flows that are mixing but at an arbitrarily slow rate [27, 30]. Currently, it
is not known if exponential decay of correlations is typical for Axiom A flows. However,
Dolgopyat [15] (see also [17]) proved that typical Axiom A flows are rapid mixing (faster
than any polynomial rate) for sufficiently regular observables. Melbourne [19, 20] extended
this result to flows with a Poincaré map modelled by a Young tower, proving for example
that the planar periodic Lorentz gas with finite horizon is rapid mixing. For this particular
flow, Chernov [7] was able to prove stretched exponential decay of correlations.

Thus, generally speaking our understanding of planar periodic dispersing billiards and
Lorentz gases is now as advanced as in the Axiom A case. However, there are a number
of classes of planar billiards for which open questions remain [8, 10, 12]. In this paper, we
focus mainly on questions related to decay of correlations for Lorentz gas flows, building
on [19] (rapid mixing) and [20] (slow mixing).

Example 1.1 (Dispersing billiards with cusps) Dispersing billiards with cusps, where the
boundary curves are all dispersing but the interior angles at corner points are zero, turned
out to be much more involved technically than the usual Lorentz gases. For example er-
godicity for the dispersing billiard map with cusps was only proved in the mid 1990’s by
Rehacek [28]. By standard arguments, ergodicity implies K-mixing [10, Chapt. 6] and the
Bernoulli property [9, 25] for all the hyperbolic billiard examples.

Concerning rates of mixing, Chernov and Markarian [11] proved, using the method of
Young towers, that decay of correlations for the billiard map satisfies p(n) = O ((logn)?/n).
It was anticipated that the logarithmic factor is an artifact of the proof, and this factor was
removed by Chernov and Zhang [14] yielding the decay rate p(n) = O(1/n). It is believed
that this result is optimal for the billiard map. This rate of decay of correlations is too weak
for strong statistical limit laws (see [1]).

Since the collisions inside a cusp occur in quick succession, it is reasonable to expect a
much faster decay rate in continuous time [12, Sect. 5.6], possibly even exponential decay
of correlations. Exponential decay seems to be beyond current techniques even for simpler
problems (such as the finite horizon planar periodic Lorentz gas). Previously, no results on
decay of correlations for the flow (not even slow mixing) were available when there are
cusps. In this paper we prove rapid mixing for the flow.

A byproduct of our proof is the almost sure invariance principle (ASIP) for the flow. We
note that the ASIP implies numerous statistical limit laws such as the central limit theorem,
the law of the iterated logarithm, and their functional versions, see for example [22, 26].

Example 1.2 (Bunimovich flowers) It was discovered by Bunimovich in the 1970’s that bil-

liard tables with focusing boundary components may also show hyperbolic behaviour. For
the first examples of such tables, constructed for example in [3], the boundary components
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are either dispersing, or focusing arcs of circles, subject to some further constraints (see
Sect. 3.1 below). Given their typical shape, such billiards are often called Bunimovich flow-
ers. Later the probably best known example of a hyperbolic billiard with focusing boundary
components, the Bunimovich stadium, was introduced in [4]. Focusing hyperbolic billiards
have a rich literature by now—it is worth pointing out Wojtkowski’s contribution, [33] in
particular, which clarified much of the mechanism behind hyperbolic behaviour. For further
historical accounts, and detailed proofs of ergodicity, we refer to the monograph [10] and
references therein.

As for rates of mixing, Chernov and Zhang [13] show that in Bunimovich flowers the
billiard map has decay of correlations p () = O ((logn)?/n?). (Again, the logarithmic factor
appears to be an artifact of the proof and it is expected that 1/n? is the optimal rate.) It
follows that the map satisfies statistical limit laws such as the ASIP. See [21] for the scalar
case and [22] for R?-valued observables.

By [24], the billiard flow immediately inherits the ASIP (and hence the other limit laws).
However, previous results were unable to establish estimates for decay of correlations of the
flow. We recall from [13] that the only effect slowing down the decay rate of the billiard map
is sliding along a circular arc, where collisions occur in quick succession. Just as in the cusp
example, it is reasonable to expect that the flow mixes better than the map in Bunimovich
flowers.

In this paper, we prove rapid mixing for the flow.

Example 1.3 (Bunimovich stadia) Bunimovich [4, 5] established hyperbolicity and ergod-
icity for the stadium billiard bounded by two parallel lines connecting two semicircles.
Markarian [18] proved decay of correlations O((logn)?/n) for the billiard map, and Cher-
nov and Zhang [14] improved this to obtain the optimal rate 1/n. This is too weak for strong
statistical limit laws; indeed Bélint and Gouézel [1] prove a nonstandard limit law (nonstan-
dard domain of attraction of the normal distribution with /z logn normalization) for typical
observables. The same limit law holds for the flow [1, 24]. In particular, the ASIP fails for
both the billiard map and the flow.

This time, we do not expect the flow to mix more rapidly than the map, but slow mixing
does not follow from previous results. In this paper, we prove that the stadium flow decays
at the same slow rate 1/t as the map.

Remark 1.4 Dolgopyat’s results [15] on rapid mixing for Axiom A flows require the observ-
ables to be smooth in the flow direction. This restriction is inherited by the generalisation
in [19, 20] to nonuniformly hyperbolic flows, and by the current paper. In particular, our
results on rates of mixing for Lorentz gases do not apply to certain physically relevant ob-
servables such as position and velocity. At present, the only result on decay of correlations
for Lorentz gas flows that includes general Holder observables is Chernov’s result for the
planar periodic Lorentz gas with finite horizon [7].

On the other hand, our proof of the ASIP for billiard flows with cusps in Example 1.1 is
valid for all Holder observables.

The remainder of the paper is organised as follows. In Sect. 2, we recall background
material on Young towers [34, 35], and on decay of correlations for flows possessing a
Poincaré map modelled by a Young tower [19, 20]. In Sect. 3, we present our new results
for Examples 1.1, 1.2 and 1.3.
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2 Young Towers and Flows

Let f: M — M be amap, and let h : M — R™ be a roof function. Let ¢, : M" — M" be
the corresponding suspension flow. Thus the map f(x) = @) (x) is a Poincaré map for
the flow. Conversely, given f and & we define the suspension M" = {(x,u) e M x R: 0 <
u < h(x)}/ ~ where (x, h(x)) ~ (fx,0). Then the suspension flow is given by ¢, (x, u) =
(x, u + t) computed modulo identifications.

In our examples, M is a finite union of Riemannian manifolds. We will say that the map
f M — M is modelled by a Young tower if it satisfies the axioms introduced by Young [34,
35]. In particular, there is a set ¥ C M that possesses an appropriate hyperbolic product
structure. Furthermore, there exists a measurable partition of Y into countably many sets Y,
andr : Y — N with constant values ry, on the Y;, such that the induced map F = f": Y — Y
is smooth and uniformly hyperbolic when restricted to any Y;, with respect to the hyperbolic
product structure of Y. It is important to note that r is not necessarily the first return time to
Y, thus the corresponding tower map is a Markov extension of the original map f: M — M.
For further details of the construction see the original references.

For examples from billiards, there is a natural invariant measure p (the Liouville mea-
sure) that is equivalent to Lebesgue measure on M with L* density. In what follows we
always assume that both the discrete return time r (defined on Y) and the roof function
h (defined on M) are integrable with respect to Lebesgue measure and hence w. The nat-
ural flow-invariant probability measure p" on M" given by " = 1 x lebesgue/ f whdu
coincides with Lebesgue measure for the billiard examples.

We aim to compute the rate of decay of correlations and statistical limit laws for suf-
ficiently regular observables v, w : M" — R. For m > 0, 5 € (0, 1), the function space
C"™"(M") consists of those v : M" — R for which llmy = VI, + 100, + -+ +
[19]"v]l, < oo where 9, denotes the derivative in the flow direction and [v|,, = |[v]e +
SUP, 2y uefo,maxtho.h(ny [V ) —v(y, w)l/d (x, y)".

We now summarize results from [19, 20] used in Section 3. Define

pvi,w(t)=/ vwowtdu”—/ vdu"/ wdp”.
Mh Mh Mh

Theorem 2.1 [19] Let f : M — M be a map modelled by a Young tower and h : M — R*
be a Holder roof function. Assume

e FExponential tails: Leb(y € Y :r(y) > n) = O(y") for some y € (0, 1).
Then typically the flow @, : M" — M" is rapid mixing: there exists n € (0, 1) and for any

n > 1, there exists m >0, C > 1, such that

100, = Cllvlmplwlimg ™",

forallv,w e C™"(M") and all t > 0.

Theorem 2.2 [20] Let f : M — M be a map modelled by a Young tower and h : M — R*
be a Holder roof function. Assume

o Polynomial tails: Leb(y € Y : r(y) > n) = O(1/nP*Y) for some B > 0, and
o 1/h € L, or more generally there is an integer p > 1 such that 1/h, € L* where
hy=h+hof+-+ho fr .
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Then typically the flow ¢, : M" — M" is polynomial mixing with rate 1/¢#: there exists
ne©,1),m=>0,C > 1, such that

100w < Cllvll gl 77,

forallv,w e C™"(M") and all t > 0.

Remark 2.3 In general, Theorems 2.1 and 2.2 hold typically, subject to a nondegeneracy
condition stated explicitly in the references [19, 20]. However, this nondegeneracy con-
dition is automatic for the billiards examples considered here because of the contact-like
structure [20].

Remark 2.4 Theorem 2.1 implies that in situations where Young [34] obtains exponential
decay of correlations for the billiard map f : M — M, rapid decay of correlations holds
for the flow ¢,. Similarly, Theorem 2.2 implies that in situations where Young [35] obtains
polynomial decay of correlations for the billiard map f : M — M with rate O(1/n?), poly-
nomial decay of correlations with rate O(1/t#) holds for the flow ¢,.

Remark 2.5 The condition that 4 is Holder can be relaxed in Theorems 2.1 and 2.2. It suf-
fices that & is uniformly piecewise Holder (hence bounded) as follows. The billiard examples
are examples of smooth dynamical systems with at most countably many singularities. Write
M =|J M; where the M, are the maximal subsets of M on which f is smooth. It is enough
that sup; ||thj I, < oo.

By construction, the Young tower that models the billiard map “respects” the partition
Um ; in the following sense: as Fly, is smooth, JY; is necessarily a refinement of the
restriction of | J M; onto Y.

Let us make one more remark. Even though this is a very simple observation, this is the
Key Observation behind the arguments of Sect. 3. Note that M can be viewed as a Poincaré
cross-section to the flow. It may be the case that there is an alternative cross-section M with
Poincaré map f: M — M (and roof function h : M — R™) that can also be modelled by a
Young tower and such that the tail distribution of the Young tower for f: M — M allows
for a better control of the statistical properties. Note that the corresponding suspension flow
@ M" — M" is identical to the original flow.

Statistical Limit Laws

Theorem 2.6 [22] Let f : M — M be a map modelled by a Young tower and h : M — R
be a Holder roof function. Assume

o Summable tails: Leb(y € Y :r(y) > n) = O(1/nP*) for some B > 1.

Then the (vector-valued) ASIP holds: there exists A > 0, and for any Holder observable
v: M" — R? with mean zero there is a d-dimensional Brownian motion W, such that (on a
possibly enriched probability space)

T
/ vop di=W(T)+ O(T*™) asT — coae.
0
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Remark 2.7 Again, it suffices that the roof function £ is uniformly piecewise Holder as
in Remark 2.5. Similarly, the Holder regularity requirement for the observable v in The-
orem 2.6 can be relaxed. Define V(x) = Oh(x) v o @ dt. It suffices that V : M — R? is
uniformly piecewise Holder.

Remark 2.8 A more difficult question is the ASIP for the time-one map of a flow. A general
argument of [16, 23] yields the scalar ASIP (for real-valued observables) in situations where
(i) summable decay of correlations is established by certain techniques, (ii) the class of
dynamical systems is closed under time reversal. This includes time-one maps for Axiom A
flows [23]. Again the result is restricted to observables that are sufficiently smooth in the
flow direction.

It is immediate from these considerations that the scalar ASIP holds for time-one maps of
the flows in the cusp and flower examples (Examples 1.1 and 1.2). The vector-valued ASIP
remains an open question even for time-one maps of Axiom A flows.

3 Billiard Flows

In this section, we specialise to billiard flows and treat the three examples discussed in the
introduction. We begin with Example 1.2 (flowers) since this is the simplest. Then we treat
Examples 1.1 (cusps) and 1.3 (stadia).

Let Q be a compact domain in R? with piecewise C* boundary 3 Q and let us consider
the corresponding billiard dynamics in Q—the motion of a point particle that travels with
unit speed and bounces off 0 Q elastically (the angle of incidence is equal to the angle of
reflection). The resulting flow ¢, is a three-dimensional volume preserving flow. There is a
natural two-dimensional cross-section M = 9 Q X [—m/2, /2] corresponding to collisions,
and the Poincaré map f : M — M is called the billiard map. We choose coordinates x =
(r, ¢) on M, where r (the position) is the arclength parameter along d Q and ¢ (the outgoing
velocity) is the angle made by the reflected trajectory and the normal to the boundary. The
natural invariant measure for the billiard map is the Liouville measure dp = cos ¢ dr dg.

By components or arcs we mean the maximal connected C3-smooth pieces of the bound-
ary d Q. We use the same terminology for the corresponding (two-dimensional) components
of the phase space M. We assume that the curvature of any component has a fixed sign, thus
we may consider convex inwards (dispersing), convex outwards (focusing) and neutral arcs,
and decompose the phase space as M = M+ U M~ U M°, respectively.

The dynamics of the billiard map/flow may depend sensitively on further geometrical
properties of dQ, including the types of the components present and their distances and
angles. Below we restrict to certain physically relevant examples and cite the literature for
their known dynamical properties. For further details on billiard dynamics in general, see
[10] and references therein.

Our analysis relies on the standard fact that the billiard map f and the roof function (col-
lision time) & are piecewise Holder continuous. A simple argument shows that the Holder
exponent is % for both f and &. Note that 2(x) = | f (x) — x| so it suffices to verify that f is
1-Holder.

It is clear that f is smooth except near preimages of tangencies (grazing collisions) and
writing f = (f;, f,) astandard calculation [10, Sect. 2.11] shows that f” is bounded except
for singularities where it behaves like 1/ cos( f,(x)). Writing ¥ = 7 /2 — ¢ and suppressing
the r-coordinates, we have fl/’/(x) ~ 1/sin(fy (x)) ~ 1/(fy(x)) so that ((f,/,(x))z)’ ~ 1.
Hence f (x) ~ /2 which is 1-Holder as required.
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3.1 Bunimovich Flowers

Bunimovich [3] studied hyperbolicity and ergodicity for a class of billiard tables Q C R?
such that (i) M° = ¢ (no neutral components); the dispersing components M+ may have
arbitrary geometry, in contrast (ii) M~ consists of circular arcs all strictly smaller than a
semicircle; (iii) if such a circular arc was extended to a full solid circle, the obtained circular
disc would be completely contained in Q; (iv) the neighbouring components are transversal
(no cusps). Actually, the conditions can be relaxed and even neutral components can be
allowed as long as certain technical assumptions are satisfied, see [13] for details.

Chernov and Zhang [13] show that for Bunimovich flowers the billiard map f: M — M
can be modelled by a Young tower with tail estimate roughly O (1/#r?). It then follows from
Young [35] that the map has decay of correlations roughly O(1/n?). By [22], the vector-
valued ASIP holds for Holder observables for both the billiard map and the billiard flow.

However, there is no immediate conclusion for the decay of correlations of the flow. (Ex-
ponential tails are required in Theorem 2.1 while Theorem 2.2 would yield at best O (1/2)
decay. In any case, the assumption that / is bounded below in Theorem 2.2 is violated.)
Nevertheless, we now prove rapid mixing for the flow for sufficiently smooth observables.
(The scalar ASIP for the time-one map for the flow then follows from Remark 2.8.)

Theorem 3.1 Let ¢; be the flow corresponding to a Bunimovich flower. Then ¢, is rapid
mixing (in the sense of Theorem 2.1).

Proof The argument in Chernov and Zhang [13, p. 1546] demonstrates the existence of
an alternative cross-section M C M (with Poincaré map f M — M) that is modelled by a
Young tower with exponential tails. We claim that the corresponding collision time h:M—
R™ satisfies the uniformly piecewise Holder condition in Remark 2.5, expressed of course
in terms of M, f, n. Rapid mixing follows from Theorem 2.1.

First, we recall the definition of M in [13]. As mentioned above we write M = MT UM~
where M corresponds to dispersing arcs and M~ corresponds to focusing arcs. Then Mis
given by M = M™" UE where E C M~ consists of only the first (sliding) collisions at each
focusing arc,so E=M~N f(M™).

Next we verify that heL>®. Since h =h on dispersing arcs we can restrict attention
to a single focusing arc I'(C M), and in particular the single first collision set Er =T" N
E. Consider x € Er. There is an integer n > 2 such that f/x €T for j =1,...,n and
f"x ¢ I'. Hence

h=g+hof", (3.1)

where g(x) = h(x) +h(fx) +---+h(f""'x) is the amount of time it takes to “slide” along
the arc I". Hence |EIE|OO < |I'| 4+ |h| and so 71 is bounded.

Finally, we verify that there is a uniform Holder constant for 71 on each partition element.
Again we may restrict to a single first collision set Er C I where I' is a focusing arc, but
this time it is necessary to consider the finer partition Er = |_J,., E, where E, = {x € E :
fixeTfor j=1,...,nand f""'x ¢T}. (In other words, f = f"*! on E,.) Note that the
partition elements E, coincide with the smoothness components of f: M — M, which is
in agreement with Remark 2.5.

Let R denote the radius of the focusing arc I". Let (r, ¢) denote the standard coordinates
and note that sliding occurs for ¢ ~ /2 so it is convenient to introduce ¢ =7 /2 — ¢. It is
immediate from the geometry of the circle that

Fx)=@+2RY, ), h(x)=Rsiny
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forallx = (r, ) e 'N f~'T". Hence

|g(x1) — g(x2)| < nR|siny —sinyo| <nR|y; — Yol (3.2)

for all x;, x, € E,. On the other hand, since the angle ¥ remains constant during the n
grazing iterations, it is elementary that there is a constant C; depending only on I" such that

Ci/(n+1) <y <Cy/nforall x € E,. Hence |y — Y| < C1 (1 — —5) < C/n” and so

1
[y —¥al2 <Cin". (33)

Combining estimates (3.2) and (3.3), we obtain |g(x1) — g(x2)| < Ca ¢ — wzl% where C, =

1
RC} depends only on the arc T'.
In addition, since f"(r,¢) = (r + 2nRy,¢y) on E, and h %—Hﬁlder, [h(f"x1) —

h(f" )] < Ca(lry = ral + QR+ DIy —2D? < Calln = ral 4191 = ¥al)? < Calln —
7212 4+ |1 — ¥2|4). Combining the estimates for g and & o ", we have shown that /4 is
Holder on E, with constant independent of n (and exponent %). Since there are only finitely
many arcs, this completes the proof. O

3.2 Dispersing Billiards with Cusps

Chernov and Markarian [11] studied dispersing billiards with cusps, where the boundary
curves are all dispersing—that is, M = M*T—but the interior angles at corner points are
zero. By [11, 14], the billiard map f : M — M can be modelled by a Young tower with
tail estimate O (1/n?). It follows from Young [35] that the map has decay of correlations
O(1/n). This is too weak for strong statistical limit laws (see [1]). Nevertheless we now
prove rapid mixing and the ASIP for the flow.

Theorem 3.2 Let ¢, be the flow corresponding to a billiard table with cusps. Then ¢, is
rapid mixing (in the sense of Theorem 2.1) and satisfies the ASIP (in the sense of Theo-
rem 2.6).

Proof Following Chernov and Markarian [11] we define M by excluding a neighbourhood
of each cusp. The new collision map f: M — M is modelled by a Young tower with expo-
nential tails [11]. By Theorems 2.1 and 2.6, it again suffices to show that the new collision
time /i : M — R* satisfies the uniformly piecewise Holder condition in Remark 2.5.

Consider a single cusp and let E, be the set of those points in M that spend exactly n
iterates in the cusp before returning to M. Note again that, in accordance with Remark 2.5,
the sets E, coincide with the smoothness components of f The calculation in [11, p. 738]
shows that 72 is bounded on E, independent of n. Hence T is bounded on the whole of M.

It remains to find a uniform Holder constant for & on each E,,. Explicit calculations are
more difficult than in Sect. 3.1 so we search for coarser estimates. We claim that there are
positive constants o, o, o3, C1, Cy (independent of n) such that

(@) [hGx1) = k()| < Cin®[x; — x,|, and
(i) [h(x1) = h(x)| < Can,

for all x1, x, € E,. It then follows that [h(x;) — h(x2)|"*! < Clx; — x5|?¥ with y = a3/,
c=C }’ C», and so 4 is uniformly piecewise Holder as required, with exponent o,y /(v + 1).
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We verify the claim with oy = 3, @ = 7¢ and a3 = 1 (and hence Holder exponent 3¢ ).
(Of course, we do not claim that these bounds are optimal, but they are strong enough for
our purposes.)

Throughout, C is a uniform constant that can change from line to line. First we prove
statement (i), which requires more effort than (ii). In particular, we need bounds on the
maximal possible expansion along a corner series (the time spent in the vicinity of the cusp),
which we summarize in Lemma 3.3 below. The proof of this technical Lemma, which relies

on several estimates obtained in [11], is moved to the Appendix.

Lemma 3.3 Consider x € E,, and let ||Dyf"|| denote the norm of the derivative of the kth
iterate of f at the point y. Then uniformly for all x € E,, and all j =3,...,n—1,

Do, fi72 < Cn®.
f

Let us show how to obtain estimate (i) using the bound of Lemma 3.3. Let x;, x, € E,,.
Recall that f and h are Holder with exponent % In particular,

[h(f7x)) =h(fIx)| < Cla —xl'?, j=0,1,2. (3.4

By Lemma 3.3, | f/x; — f/x;] < Cn®|f?x; — f%x,| for j =3,...,n — 1 so by Holder
continuity of f and &,

|h(fix1) = h(fix)| < Cn*llxy — x|, j=3,...,n—1, (3.5)
and

|h(f"x1) = h(f"x)| < Clf"x1 = froxl? < CLf" oy — 77 x4

< Cn* foxi = x|t < Cnxy — x| V10 (3.6)

Summing up the n + 1 terms of estimates (3.4), (3.5) and (3.6), we get (i) with o = % and
Oy = 1_16

Finally we prove estimate (ii). By [11, p. 738, last line], we have h(fx;) 4+ --- +
h(f"’]xj) < Cn~!'for j =1,2. As shown in [11, pp. 748-749], the cell E, has diameter of
order n=%/3 so that |h(x;) — h(x2)| < C|x; — x;]'/?> < Cn~'/3. By time-reversibility of the
construction, [(f"x;) — h(f"x2)| < Cn~'/3. Altogether, we have [h(x;) — h(x,)| < Cn~'/3
establishing estimate (ii). (The estimates of [11] that we have used are established in the
first instance for a special billiard table with three cusps, but then extended to the general
situation in [11, Sect. 6].) O

Remark 3.4 Again, we stress that the vector-valued ASIP for the flow holds for general
(piecewise) Holder observables, whereas rapid mixing is restricted to sufficiently smooth
observables (as is the scalar ASIP for the time-one map of the flow which holds by Re-
mark 2.8).

3.3 Bunimovich Stadia
Bunimovich [5] established hyperbolicity and ergodicity for the stadium billiard bounded

by two parallel lines (M°) connecting two semicircles (M ™). By [14, 18], the billiard map
f:M — M can be modelled by a Young tower with tail estimate O(1/n?). It follows
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from Young [35] that the map has decay of correlations O(1/n) for Holder observables.
This is too weak for strong statistical limit laws; indeed Bélint and Gouézel [1] prove a
nonstandard limit law (nonstandard domain of attraction of the normal distribution with
+/nlogn normalization) for typical observables. By [24], the same limit law holds for the
flow. In particular, the ASIP fails for both the billiard map and the flow.

This time, we do not expect the flow to mix more rapidly than the map. Nor can we
apply Theorem 2.2 directly since the roof function is not bounded below. Nevertheless the
conclusion of Theorem 2.2 is valid.

Theorem 3.5 Let ¢, be the flow corresponding to a Bunimovich stadium. Then ¢, is poly-
nomially mixing with rate 1/t.

Proof The argument in Chernov and Zhang [13, p. 1548] demonstrates the existence of an
alternative cross-section M C M (with Poincaré map f M- M ) that is modelled by a
Young tower with exponential tails. However, the corresponding roof function h:M—R*
is unbounded, so Theorem 2.1 does not apply this time. As mentioned above, they show that
the corresponding tower for f : M — M has tails decaying at the rate O(1/n?). We note
that the tower for M is built over the same base Y as the tower for M but is strictly higher
(since it incorporates the returns from M to M ).

Whereas the cross-section M in [13] takes account of both sliding along circular arcs
in M~ and bouncing between the parallel straight lines in MP°, we define an intermediate
cross-section M’ with M C M’ C M that takes only account of sliding. That is, we define
M =M°UE where E=M~N f (MO) consists of the first (sliding) collisions in M~

It is immediate that the tower for f”: f: M — M’ has tail decay rate no worse than the
tower for M: it shares the same base Y as the other two towers, but is lower than the tower
for M (and higher than the tower for M). In particular the tower for M’ has tail decay rate
o(1/n?.

Let /' : M’ — R* denote the new roof function. It remains to verify the hypotheses
on /' in Theorem 2.2. The proof that His uniformly piecewise Holder is identical to that in
Sect. 3.1. We claim that iz\; is bounded below for p = 2. Indeed, 1 can approach zero only at
points x € M° which are close to one of the endpoints of a straight boundary component, that
is, to the corner made with M ~, and have velocity almost tangent to the straight boundary
component. But then fx is about to undergo a long sequence of sliding collisions so that
7 ( fx) has magnitude approximately the length of a semi-circular arc in M~. Hence iz\’z is
bounded away from zero as required. O
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Appendix: Proof of Lemma 3.3

In this Appendix we show how the technical estimates of [11] imply our Lemma 3.3.
Throughout, we use the notation A(x, dx) =< B(x, dx) if there are some positive constants ¢
and C, uniform in the relevant phase points x € M and tangent vectors dx € 7, M, such that
cA(x,dx) < B(x,dx) <C A(x,dx).
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First let us summarize some material from the theory of dispersing billiards in general
(for further details see [10], or the first page of [11, Sect. 4]). Standard coordinates for
the billiard map phase space are r € dQ (configuration) and ¢ € [—n/2, /2] (velocity an-
gle). Directions parallel to a fixed tangent vector w = (dr, d¢) can be characterized by their
slope m = Z—‘f. In dispersing billiards, unstable vectors have positive, and stable vectors have

negative slope. In addition to the usual (Euclidean) metric |w| = \/dr? + d¢?, there is an-
other metric-type quantity, the p-metric, to measure the length of tangent vectors defined
as |w|, = cosg|dr|. The p-metric is degenerate on arbitrary tangent vectors; however it
is well-defined and increases/decreases monotonically for the vectors tangent to the unsta-
ble/stable direction. In particular, if w, € 7, M is tangent to the unstable direction, then

D,

DS Wy _ 45 1487,
lwlp

where T = h(x) is the length of the free flight, while B;" measures how strongly the outgoing

wavefront corresponding to the tangent vector w diverges. In particular, B;" and m, are

related by

m, = B cosp — K,

where K is the curvature of dQ . Note that K > 0 is uniformly bounded away from 0 and

0o, whereas B;' is unbounded. The Euclidean and the p-length of an unstable vector are
related by

_ | wu |

|wyl|p, =cosg =

+m;

From now on we focus on cusps, in particular the dynamics of corner series, following
[11]. Fix x € E, and a tangent vector dx € 7, M. We introduce the notations: x/ = f/x,
dxJ = D, f/(dx), and supply all further quantities introduced above (B, cosg,m, 1, ...)
with the index j if they correspond to x/. For any tangent vector w, let w, and w, denote
its projections to the stable and unstable direction, respectively. In what follows, unless
otherwise stated, we will work with unstable vectors, and if no confusion arises omit the
subscript u for brevity. By time reflection symmetry of billiard dynamics (and time reflection
symmetry of corner series) analogous estimates hold for stable vectors.

As observed in [11], the corner series of x € E,, can be partitioned into three periods:
the entering period 1 < j < n, the turning period n; < j < ns, and the exiting period n3 <
j <n, with n| < n3 < n. The first and the last point of the series, x' and x" are exceptional,
as certain dynamical quantities lack uniform bounds in these points. However, [11] obtains,
in terms of n, uniform upper and lower bounds for the dynamical quantities in x/ with
2 < j <n —1, which we summarize below. It is worth mentioning that our indices j and
n are n and N in [11], respectively, and that [11] often uses the notation y = min(|% —
¢|, |5 — ¢l). Note furthermore that, by time reflection symmetry, the bounds in the exiting
and the entering periods are equivalent once we replace j withm =n + 1 — j, see also [11,
Remark 3.3].

Concerning the turning period, by [11, p. 738], line —3,

cosp; <1, 71 =n"% j=ny,...,ns,

and by [11, p. 742], line —4,
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This implies m ; < n for the slope of the unstable direction, and % = n for the relation of
the Euclidean and the p-length of unstable vectors.
Concerning the entering period, by [11, Formulas (3.5), (3.32)],

COS @; xj2/3n’2/3; T; xj’4/3n’2/3; j=2,...,nq,
while, by the second line in [11, Remark 4.3]:
= jYB3n23 j=2 ... n.
This implies m; < j < n for the slope of the unstable direction, and 1 < ‘l"i‘ < Cn for the

relation of the Euclidean and the p-length of unstable vectors. As already mentloned similar
bounds can be obtained for the exiting period.

We still need to refer to Proposition 4.1, in particular to Formula (4.5) and the last para-
graph of Sect. 4 in [11]. This way we obtain bounds on the expansion of the p-length of
unstable vectors, which we summarize in estimate 3. below. We also note that all calcula-
tions in the proof of [11, Proposition 4.1] are in terms of the p-metric, see the top three lines
of [11, p. 741].

Here we collect the necessary estimates, which, as discussed above, all follow from the
analysis of [11]:

1. In the tangent spaces of x4, j=2,...,n—1, the angle of the stable and the unstable
direction is at least C'/n. This implies that

C(ldx]1 + |dx]|) < |dx’| < Cn(ldx]| + ldx]]), j=2,....n—1.
2. For dx,f and dxf; j=2,...,n—1, the Euclidean and p-norms are related by
ldx]|, <|dx]| < Cnldx]|,; ldx!|, <l|dx]| < Cnldx]],.

3. Apart from the first two and the last iterate, [11] obtains upper bounds in terms of n on
the expansion of the p-norm for an unstable vector in a corner series:

ldx/|, <Cnldx}l,, j=2,...,n—1.

Now applying consecutively estimates 1., 2., 3. (along with the monotonicity properties of
the p-metric), and once more estimates 1. and 2., we obtain

ldx7| < Cn(ldx]| + |dx]|) < Cn*(ldx]], + |dx]|,) < Cn*(ldx}|, + |dx]|,) < Cn®|dx?|,

which completes the proof of Lemma 3.3.
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